skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Soto, Emmaris"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The ionospheric O+number density can be measured remotely during the day by observing its optically thick 83.4 nm radiance. Some ambiguity is present in the process of retrieving the density due to uncertainties in the initial excitation rate. This can be removed by observing a companion optically thin emission at 61.7 nm originating from the O+(3s2P) state, providing that the ratio of the initial excitation rates is known. Analyses of ICON EUV data using an 83.4/61.7 emission ratio of order 10 result in O+densities lower by ∼2 than other measurements. Key to relating the two emissions is accurate knowledge of the partial photoionization cross sections and the spectroscopy of O+—the topic of this paper. Up to now, no independent evaluation of the ratio of the 83.4/61.6 emission ratio exists. The recent availability of state‐of‐the‐art calculations of O partial photoionization cross sections into a variety of O+states presents an opportunity to evaluate the O+(2p44P)/O+(3s2P) ionization rate ratio. We calculate excitation of these parent states of the emissions including both direct and cascade excitation from higher lying O+energy states. The resulting theoretical prediction gives ratios that range from 13.5 to 12 from solar minimum to maximum, larger than the value of 10 used by the ICON 83.4 and 61.7 nm algorithm. The higher theoretical values for the ratio reconcile the ∼2 discrepancy between simultaneous ICON and other electron density measurements. 
    more » « less
  2. Abstract Most ionospheric models cannot sufficiently reproduce the observed electron density profiles in the E‐region ionosphere, since they usually underestimate electron densities and do not match the profile shape. Mitigation of these issues is often addressed by increasing the solar soft X‐ray flux which is ineffective for resolving data‐model discrepancies. We show that low‐resolution cross sections and solar spectral irradiances fail to preserve structure within the data, which considerably impacts radiative processes in the E‐region, and are largely responsible for the discrepancies between observations and simulations. To resolve data‐model inconsistencies, we utilize new high‐resolution (0.001 nm) atomic oxygen (O) and molecular nitrogen (N2) cross sections and solar spectral irradiances, which contain autoionization and narrow rotational lines that allow solar photons to reach lower altitudes and increase the photoelectron flux. This work improves upon Meier et al. (2007,https://doi.org/10.1029/2006gl028484) by additionally incorporating high‐resolution N2photoionization and photoabsorption cross sections in model calculations. Model results with the new inputs show increased O+production rates of over 500%, larger than those of Meier et al. (2007,https://doi.org/10.1029/2006gl028484) and total ion production rates of over 125%, while production rates decrease by ∼15% in the E‐region in comparison to the results obtained using the cross section compilation from Conway (1988,https://apps.dtic.mil/sti/pdfs/ADA193866.pdf). Low‐resolution molecular oxygen (O2) cross sections from the Conway compilation are utilized for all input cases and indicate that is a dominant contributor to the total ion production rate in the E‐region. Specifically, the photoionization contributed from longer wavelengths is a main contributor at ∼120 km. 
    more » « less
  3. Abstract E‐region models have traditionally underestimated the ionospheric electron density. We believe that this deficiency can be remedied by using high‐resolution photoabsorption and photoionization cross sections in the models. Deep dips in the cross sections allow solar radiation to penetrate deeper into the E‐region producing additional ionization. To validate our concept, we perform a study of model electron density profiles (EDPs) calculated using the Atmospheric Ultraviolet Radiance Integrated Code (AURIC; D. Strickland et al., 1999,https://doi.org/10.1016/s0022-4073(98)00098-3) in the E‐region of the terrestrial ionosphere. We compare AURIC model outputs using new high‐resolution photoionization and photoabsorption cross sections, and solar spectral irradiances during low solar activity with incoherent scatter radar (ISR) measurements from the Arecibo and Millstone Hills observatories, Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC‐1) observations, and outputs from empirical models (IRI‐2016 and FIRI‐2018). AURIC results utilizing the new high‐resolution cross sections reveal a significant difference to model outputs calculated with the low‐resolution cross sections currently used. Analysis of AURIC EDPs using the new high‐resolution data indicate fair agreement with ISR measurements obtained at various times at Arecibo but very good agreement with Millstone Hills ISR observations from ∼96–140 km. However, discrepancies in the altitude of the E‐region peak persist. High‐resolution AURIC calculations are in agreement with COSMIC‐1 observations and IRI‐2016 model outputs between ∼105 and 140 km while FIRI‐2018 outputs underestimate the EDP in this region. Overall, AURIC modeling shows increased E‐region electron densities when utilizing high‐resolution cross sections and high‐resolution solar irradiances, and are likely to be the key to resolving the long standing data‐model discrepancies. 
    more » « less